Algebra 2 Unit: Exponential and Logarithmic Functions Section: Solving Exponential and Logarithmic Equations

Extra example problems:

1.
$$4^x = 5$$
 2. $7^x = 12$
 $log(4^x) = log(5)$
 $log(7^x) = log(12)$
 $xlog4 = log5$
 $xlog7 = log12$
 $x = \frac{log5}{log4} \approx 1.1610$
 $x = \frac{log12}{log7} \approx 1.2770$

3.
$$13^{x-1} = 2$$
4. $8^{x-2} = 14$ $log(13^{x-1}) = log(2)$ $log(8^{x-2}) = log(14)$ $(x - 1)log13 = log2$ $(x - 2)log8 = log14$ $xlog13 - log 13 = log2$ $xlog8 - 2log8 = log14$ $xlog13 = log2 + log13$ $xlog8 = log14 + 2 log8$ $x = \frac{log2 + log13}{log13}$ $x = \frac{log14 + 2log8}{log8}$ $x \approx 1.2702$ $x \approx 3.2691$

5.
$$5^{x+1} = 3$$
6. $2^{x+1} = 7$ $log(5^{x+1}) = log(3)$ $log(2^{x+1}) = log(7)$ $(x + 1)log5 = log3$ $(x + 1)log2 = log7$ $xlog5 + log 5 = log3$ $xlog2 + log 2 = log7$ $xlog5 = log3 - log5$ $xlog2 = log7 - log2$ $x = \frac{log3 - log5}{log5}$ $x = \frac{log7 - log2}{log2}$ $x \approx -0.3174$ $x \approx 1.8074$

7. $\log_7 x = 4$	8. log ₂ x = 8
$7^4 = x$	2 ⁸ = x
2401 = x	256 = x

9.
$$\log_2(3x - 8) = 6$$

 $2^6 = 3x - 8$
 $64 = 3x - 8$
 $72 = 3x$
 $24 = x$
10. $\log_x 121 = 2$
 $x^2 = 121$
 $\sqrt{x^2} = \pm \sqrt{121}$
 $x = 11$
Only the positive answer is valid.

11. $4 \log_6(2y + 8) = 8$ Divide both sides by 4 first. $\log_6 (2y + 8) = 2$ $6^2 = 2y + 8$ 36 = 2y + 828 = 2y14 = y

13.
$$\log_{6} (8x) - 7 = -3$$

Add 7 to both sides first.
 $\log_{6} (8x) = 4$
 $6^{4} = 8x$
 $1296 = 8x$
 $162 = x$

15. 2(5)^{w+3} = 34
Divide both sides by 2 first.

$$5^{w+3} = 17$$

 $log(5)^{w+3} = log17$
(w + 3)log5 = log17
wlog5 + 3log5 = log17
wlog5 = log17 - 3log5
w = $\frac{log17 - 3log5}{log5}$
w ≈ -1.2396

12. $3 \log_5(x^2 + 9) - 6 = 0$ Add 6 to both sides and divide by 3. $\log_5 (x^2 + 9) = 2$ $5^2 = x^2 + 9$ $25 = x^2 + 9$ $0 = x^2 - 16$ 0 = (x + 4)(x - 4)x = -4, 4

> 14. $\log_4 (10x) - 3 = 0$ Add 3 to both sides first. $\log_4 (10x) = 3$ $4^3 = 10x$ 64 = 10x6.4 = x

16. $4(2)^{x-5} = 12$ Divide both sides by 4 first. $2^{x-5} = 3$ $log(2)^{x-5} = log3$ (x-5)log2 = log3xlog2 - 5log2 = log3xlog2 = log3 + 5log2 $x = \frac{log3 + 5log2}{log2}$ $x \approx 6.5850$

17.
$$9^{2x-1} + 4 = 20$$

Subtract 4 from both sides first.
 $9^{2x-1} = 16$
 $log(9)^{2x-1} = log16$
 $(2x - 1)log9 = log16$
 $2xlog9 - log9 = log16$
 $2xlog9 = log16 + log9$
 $x = \frac{log16 + log9}{2log9}$
 $x \approx 1.1309$

18. $5^{x^2-3}+2 = 74$ Subtract 2 from both sides first. $5^{x^2-3} = 72$ $\log 5^{x^2-3} = \log 72$ $(x^2 - 3)\log 5 = \log 72$ $x^2\log 5 - 3\log 5 = \log 72$ $x^2\log 5 = \log 72 + 3\log 5$ $x^2 = \frac{\log 72 + 3\log 5}{\log 5}$

19. $\log_2 4 + \log_2 x = 5$ Combine the logs using the product property: $\log a + \log b = \log (ab)$

$$log_{2} (4x) = 5$$

 $2^{5} = 4x$
 $32 = 4x$
 $8 = x$

 $20. \quad \log_8 2 + \log_8 (2x) = 2$ Combine the logs using the product property: $\log a + \log b = \log (ab)$

$$log_8 (4x) = 2$$

 $8^2 = 4x$
 $64 = 4x$
 $16 = x$

Use this area to take any notes or work out any of the problems: