
Course Title: AP Computer Science AB (DL)

Meeting Times: This is a 36 week course. Students engage in the online class
according to the same academic calendar of their schools. Additionally, they can
expect to spend additional time on student activities such as reading, writing,
researching and completing assignments.

Course Description:

A. AP Computer Science AB serves as an introductory course in computer
science and contains content that is equivalent to a first and second
semester university level Computer Science course. Computer Science
AB emphasizes programming methodology, problem solving, algorithms,
data structures and abstraction. Students will also gain an understanding
of the basic hardware and software components of computer systems.

This course focuses around developing computer programs or parts of
programs to correctly solve a problem. Students will also learn about
program design principles that will allow them to write programs that are
understandable, adaptable and reusable. Students will also be introduced
to other important computer science concepts including the development
and analysis of algorithms, the development and use of fundamental data
structures.

B. Knowledge of basic algebra and experience in problem solving is
beneficial. Students should also possess competence in written
communication.

Course Purpose and Goals:

a. Philosophy
This course is the equivalent of an introductory college level 2
semester Computer Science course. As such, the type of
expectations, assignments, level and type of discourse are significantly
different from those experienced in most high school programming
courses.

b. Goals (From the College Board AP Computer Science A, AB Course Description

Book, May 2007, May 2008, pgs. 4-5)
The goals of an AP course in computer science are comparable to
those in the introductory sequence of courses for computer science
majors offered in college and university computer science
departments. It is not expected, however, that all students in an AP
Computer Science course will major in computer science at the
university level. An AP Computer Science course is intended to serve
both as an introductory course for computer science majors and as a
course for people who will major in other disciplines that require

significant involvement with technology. It is not a substitute for the
usual college-preparatory mathematics courses.
The following goals apply to both of the AP Computer Science courses
when interpreted within the context of the specific course. Students
should be able to:

I. design and implement computer-based solutions to problems in a
variety of application areas – g1

II. use and implement commonly-used algorithms and data
structures – g2

III. develop and select appropriate algorithms and data structures to
solve problems – g3

IV. code fluently in an object-oriented paradigm using the
programming language Java. Students are expected to be familiar
with and be able to use standard Java library classes from the AP
Java subset – g4

V. read and understand a large program consisting of several
classes and interacting objects. Students should be able to read
and understand a description of the design and development
process leading to such a program. (An example of such a
program is the AP Computer Science Case Study.) – g5

VI. identify the major hardware and software components of a
computer system, their relationship to one another, and the roles
of these components within the system – g6

VII. recognize the ethical and social implications of computer use – g7

c. Conceptual organization
(AP recommends the following six overarching themes (From the College
Board AP Computer Science A, AB Course Description Book, May 2007, May 2008
pgs. 12-25)

I. “Object Oriented Program Design: The overall goal for
designing a piece of software (computer program) is to correctly
solve the given problem. At the same time, this goal should
encompass specifying and designing a program that is
understandable, can be adapted to changing circumstances, and
has the potential to be reused in whole or in part. The design
process needs to be based on a thorough understanding of the
problem to be solved.”

II. “Program Implementation: The overall goals of the program
implementation parallel those of program design. Classes that fill
common needs should be built so that they can be reused easily
in other programs. Object oriented design is an important part of
program implementation.”

III. “Program Analysis: The analysis of programs includes
examining and testing programs to determine whether they
correctly meet their specifications. It also includes the analysis of
programs or algorithms in order to understand their time and
space requirements when applied to different data sets.”

IV. “Standard Data Structures: Data structures are used to
represent information within a program. Abstraction is an
important theme in the development and application of data
structures.”

V. “Standard Algorithms: Standard Algorithms serve as examples
of good solutions to standard problems. Many are intertwined with
standard data structures. These algorithms provide examples of
analysis of program efficiency.”

VI. “Computing in Context: A working knowledge of the major
hardware and software components of computer systems is
necessary for the study of computer science, as is the awareness
of the ethical and social implications of computing systems.”

Course Format and Policies

The online courses have the same level of rigor and adhere to the same
standards set forth by the school system and the College Board. To access all
courses, students need access to a computer and the Internet via a web
browser. All classes are offered via the Blackboard Learning Management
System.

The primary goal of this course is to prepare students for the AP Computer
Science AB exam by engaging them, in an active role in the learning process.
The course textbook contains all the language structures and syntax needed for
students to learn APCS Subset which is tested on the AP exam. It is full of
program examples, exercises, questions, tips, and notes. In addition, the online
course includes many examples and supplemental materials.

We will be taking a gradual but fast paced approach, starting with simple Object
Oriented Programming (OOP) examples and working up to more complex OOP
case studies like the GridWorld case study which is tested on the exam.
Emphasis will be placed on a program's readability. In this changing world it is
important that programs should be clear, properly structured, and well
documented.

Students will be monitored and evaluated based on the programs they write to
meet assignments, their performance on tests, and their quality of participation in
classroom discussions. It is the student’s responsibility is to monitor her

progress based upon the feedback she receives on the required class work and
her perception of her own understanding of the material.

Textbooks, Materials and other Resources:

1. Lewis, John, Loftus, William & Cocking, Cara (2007). Java Software
Solutions for AP Computer Science. 2nd Ed.
Addison Wesley.
ISBN: 0-1322225-1-5

2. Litvin, Maria & Litvin, Gary. (2003). Java Methods AB – Data
Structures.
Skylight Publishing.
ISBN: 0-9654853-1-5

3. Litvin, Maria. (2006). Be Prepared for the AP Computer Science Exam
2nd Ed.
Skylight Publishing
ISBN: 0-9727055-3-8

4. Sun Java Tutorial (java.sun.com/docs/books/tutorial/)
5. Sun Java 2 SDK version 1.5 (Java 5)
6. BlueJ version 2.1.3 or later
7. AP Subset from the College Board site

http://apcentral.collegeboard.com/apc/public/repository/52435apcompscilocked_4315.pdf
8. The Gridworld case study from the College Board site

http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/151155.html

Course Content:

Major Topic Topics References/

Readings
Assignments/
Labs

Computer
Systems

(2 Weeks)*

*times are
approximate

A. Major hardware
components

B. System Software
C. Types of Systems
D. Responsible Use of

Computer Systems

Instructor
Handouts

Online readings
concerning
Computer
Ethics

 Exam
 Journal*

Meets these
goals listed
above: [g6, g7]

* Journal
assignments are
reflective
writings in which
the student talks
about what went
right, what
didn’t, what they
didn’t quite
understand, etc.

http://apcentral.collegeboard.com/apc/public/repository/52435apcompscilocked_4315.pdf
http://apcentral.collegeboard.com/apc/public/repository/52435apcompscilocked_4315.pdf
http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/151155.html
http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/151155.html

Program Design

Program
Implementation

Program
Analysis

(5 weeks)

A. Program Design
B. Class Design
C. Implementation

Techniques
1. Methodology
2. Object-oriented

development
3. Top-down

development
4. Encapsulation and

information hiding
5. Procedural

abstraction
D. Programming Constructs

1. Primitive types vs.
objects . (This is
where we begin to
discuss selecting
appropriate data
structures to solve
various classes of
problems)

2. Declarations
3. Wrapper classes

and autoboxing
4. Console Output
5. Java Library

Classes
6. Testing
7. Debugging
8. Understand and

modify existing
code

Instructor
Handouts

Java Methods
AB chapter 1

Sun Java online
tutorial

 On-line
worksheet

 3 programs**
 Exam
 Journal

[g1, g2, g4]

Case Study

(1 week)

GridWorld Case Study Chapter 1 The
questions in
chapter 1 of
the narrative.

 Journal

[g5]

Lists and
Interators

(2 weeks)

A. The List interface
B. Array implementation of a

list (More discussion of
appropriate data
structures for different

Java Methods
AB chapter 2

 On-line
worksheet

 2 programs**
 Exam
 Journal

classes of problems as
well as the algorithms for
traversals, insertions and
deletions)

C. Linked Lists
D. Generics
E. Linked Lists vs. Arrays
F. Traversals and Iterators

[g1, g2, g3, g4]

Case Study

(1 ½ weeks)

GridWorld Case Study Chapter 2 The
questions in
chapter 2 of
the narrative.

 Journal

[g1, g5]

Stacks and
Queues

(2 weeks)

A. Implementation of Stack
Class

B. The Hardware Stack
C. Implementation of queues

Java Methods
AB chapter 3

 2 On-line
worksheets

 3 programs**
 Exam
 Journal

[g1, g2, g3, g4]

Case Study

(1 ½ weeks)

GridWorld Case Study Chapter 3 The
questions in
chapter 3 of
the narrative.

 Journal

[g5]

Recursion

(2 weeks)

A. Recursive Methods
B. When not to use recursion
C. Debugging recursive

methods

Java Methods
AB chapter 4

 On-line
worksheet

 2 programs**
 Exam
 Journal

[g1, g2, g3, g4]

Case Study

(2 weeks)

GridWorld Case Study Chapter 4 The
questions in
chapter 4 of
the narrative.

 Journal

[g5]

Binary Trees

(2 weeks)

A. Implementation of binary
trees

B. Traversals

Java Methods
AB chapter 5

 On-line
worksheet

 2 programs

C. Binary search trees
D. Comparable objects and

comparators
E. TreeSet and TreeMap

 Exam
 Journal

[g1, g2, g3, g4]

Lookup Tables
and Hashing

(2 weeks)

A. Lookup Tables
B. Hash Tables
C. HashSet and HashMap

Java Methods
AB chapter 6

 On-line
worksheet

 3 programs**
 Exam
 Journal

[g1, g2, g3, g4]

Priority Queues

(2 weeks)

A. The priority queue
interface

B. Binary trees
C. Heaps and priority queues

Java Methods
AB chapter 7

 On-line
worksheet

 1 program
 Exam
 Journal

[g1, g2, g3, g4]

Analysis of
Algorithms

(2 weeks)

A. Big-Oh Notation
B. Sorting algorithms

Java Methods
AB chapter 8

 Exam
 Journal

[g1, g2, g3, g4]

Case Study

(2 weeks)

GridWorld Case Study Chapter 5 The
questions in
chapter 5 of
the narrative.

 Journal

[g5]

Review of Exam

(2 weeks)

Reviewing and studying for the
exam

Being Prepared
for the AP
Computer
Science Exam

Review
questions and
sample exams.

Final Project

(5 weeks)

Using the knowledge of Java
contained in the AP Subset and
new concepts researched on her
own the student will develop a
real-world solution to a problem.

Independent
research.

Finished project
will be a large
program that
involves the use
of programming
concepts not
touched upon
during the
preparation for
the AP exam.
Concepts such
as file handling,
networking,

serialization,
etc. **

[g1, g2, g3, g4,
g5, g7]

**Throughout the course, students are asked to design and implement computer-based
solutions to problems in a variety of application areas. They do this by way of the
programming assignments. These assignments require students to write computer
applications (programs) that acquire and manipulate a variety of different types of data for
a variety of different application areas. The programming assignments are the practical
application of all of the above concepts and a major vehicle for assessing what the student
understands and can do.

Assignments and assessments:

a. Worksheets are open-ended online quizzes that a student may take as
many times as needed to get 100%. No credit is received until 100%
correctness is achieved.

b. Programs are either whole programs or parts of programs that a student

has to design and implement. Programs are to be redone until they
meet the program specification provided.

c. Exams are modeled after the AP exam to the best of the instructor’s

ability. They are both Multiple Choice and Free Response.

d. The programmer’s journal is for the student to reflect on the readings
and assignments. Other than instant messaging this is the instructor’s
best opportunity to address the student’s concerns and to shore up
weaknesses in the student’s understanding of concepts.

 e. Official system-wide Grading Scale
 90–100 A
 80-89 B
 70-79 C
 60-69 D
 59 or below F

Weighted grades are calculated for students completing the course and
taking the requisite exam of the AP Course.
Unweighted scale A = 4 Weighted scale A = 5
Unweighted scale B = 3 Weighted scale B = 4
Unweighted scale C = 2 Weighted scale C = 3
Unweighted scale D = 1 Weighted scale D = 2
Unweighted scale F = 0 Weighted scale F = 0

Special Information relevant to specific AP Courses:

This course is an asynchronous online course offered to students across
several different time zones in a number of different countries in the
Americas, Europe and Asia.

Support Services:

To help students maintain successful participation, each student has a
designated local facilitator who serves as the liaison between the teacher,
the student, parents and school administrators.

Sample Programming Assignments

Sample Programming Assignment 1

Design and implement a method (evaluate) that evaluates a postfix expression
that operates on integer operands using the arithmetic operators +, -, *, /, %.
You are already familiar with infix expressions, in which the operator is positioned
between its two operands. A postfix expression puts the operator after its
operands. Keep in mind that the operand could be the result of another
operation. Postfix notation eliminates the need for parentheses to force
precedence. For example, the following infix expression:

(5+2) * (8-5)

Is equivalent to the following postfix expression:

5 2 + 8 5 - *

The evaluation of a postfix expression is facilitated by using a stack. As you
process a postfix expression from left to right, you encounter operands and
operators. If you encounter an operand, push it on the stack. If you encounter
an operator, pop two operands off the stack, perform the operation, and push the
result back on the stack. When you have processed the entire expression, there
will be one value on the stack, which is the result of the entire expression.

You may want to use the StringTokenizer class (page 153 in the text) to assist in
the parsing of the expression. You can assume the expression will be in valid
postfix form.

I am providing you with a skeleton program that you will complete by completing
the evaluate method. The main method of this program will test your evaluate
method. Sample output of the skeleton program is:

Sample output of the finished program is:

Sample Programming Assignment 2

Create a new project in BlueJ.

Part One -

Create a class IntegerArray that has the following methods:

• IntegerArray (int size) – constructor method that creates a new Array of

size elements. Elements are initialized to 0.

• void randomize() -- fills the Array with random integers between 1 and

100, inclusive.

• void print() -- prints the array elements and indices

• int search(int target) -- looks for value target in the Array using a

sequential search algorithm. Returns the index where it first appears if it is

found, -1 otherwise.

• void selectionSort() -- sorts the Array into ascending order using the

selection sort.

• void replaceFirst(int oldVal, int newVal) -- to the IntegerArray class that

replaces the first occurrence of oldVal in the Array with newVal. If oldVal

does not appear in the Array, it should do nothing (but it's not an error).

Note that you already have a method to find oldVal in the Array; use it!

Use documentation comments to document this class completely. Check the
generated documentation to verify that everything is documented to the point
where another Java programmer could use your class with only the
documentation to look at.

Part Two –

Create a menu driven application TestIntegerArray to test every method in
IntegerArray.

Below you will find some screen shots of the application in action.

Creating a 6 element list of random numbers and printing it:

Sorting the list and printing the sorted list:

Searching for an element and then printing the list:

Replacing an element in the list and printing the list:

Part 3 -

Now create two more classes (In the same project):

IntegerList

TestIntegerList

These classes will be virtually the same as IntegerArray and TestIntegerArray
except that IntegerList will be implemented using an ArrayList instead of an
Array.

Export your project a .jar file and turn it in.

Sample Programming Assignment 2

Assignment 10-1 Recursion

Create a new project in BlueJ.. Create a class named MathTricks. Create a
class named TestMathTricks.

Part 1

Computing a positive integer power of a number is easily seen as a recursive
process. Consider an:

• If n = 0, an is 1 (by definition)
• If n > 0, an is a * an-1

In MathTricks create the following method:
 public static long power(int base, int exp)

The power() method will take a base, raise it to power of exp (baseexp) and
return the result as a long integer.
 public static long power(int base, int exp)
 {
 long pow;

 //if the exponent is 0, set pow to 1

 //otherwise set pow to base * (base to the power of(exp-1))

 return pow;

 }

TestMathTricks will be menu driven. One choice will test the power() method by
prompting the user for a base and exponent and printing the result.

Part 2

In mathematics, the factorial of a natural number n is the product of the positive
integers less than or equal to n. This is written as n! and pronounced 'n factorial'.

Definition

The factorial function is formally defined by

For example,

5! = 5 x 4 x 3 x 2 x 1 = 120

This definition implies in particular that

0! = 1

The recursion algorithm for factorial is:

 FACT_X = X * (X-1) * (X-2) * (X-3) * 1 ,or

 FACT_X = X * (X-1)! for X0 and 0! =1

The recursive algorithm is to repeatively multiply a value (X) by the value-1 (X-1),
then X = X-1, then repeat (recursion) until X = 1.

The termination condition is if the parameter(X) is less than or equal to 1. The
parameter (X) which is passed to the next function is the parameter passed to
THIS version of the function minus one(1).

The final result is the factorial of the parameter (X).

In your MathTricks class write a method with the following signature:
 public static long factorial (int num)

The factorial() method will be a recursive method that given an integer returns
the factorial of that integer.

Part 3

Base Conversion
One algorithm for converting a base 10 number to base b involves repeated
division by the base b. Initially one divides the number by b. The remainder from
this division is the units digit (the rightmost digit) in the base b representation of
the number (it is the part of the number that contains no powers of b). The
quotient is then divided by b on the next iteration. The remainder from this
division gives the next base b digit from the right. The quotient from this division
is used in the next iteration. The algorithm stops when the quotient is 0. Note that
at each iteration the remainder from the division is the next base b digit from the
right -- that is, this algorithm finds the digits for the base b number in reverse
order.

Here is an example for converting 30 to base 4:

 Quotient Remainder
30/4 = 7 2
 7/4 = 1 3
 1/4 = 0 1

The answer is read bottom to top in the remainder column, so 30 (base 10) = 132
(base 4).

Think about how this is recursive in nature: If you want to convert x (30 in our
example) to base b (4 in our example), the rightmost digit is the remainder x % b.
To get the rest of the digits, you perform the same process on what is left; that is,
you convert the quotient x / b to base b. If x / b is 0, there is no rest; x is a single
base b digit and that digit is x % b (which also is just x).

Here is an outline of a possible convert() method:

 public static String convert (int num, int b)
 {
 int quotient; // the quotient when num is divided by base b
 int remainder; // the remainder when num is divided by base b

 quotient = ____________________________;

 remainder = ___________________________;

 if (_____________________________________) //fill in base case
 {
 return ("" + _______________________________);
 }
 else
 {
 // Recursive step: the number is the base b representation of
 // the quotient concatenated with the remainder

 return (__);

 }
 }

Fill in the blanks above (for now don't worry about bases greater than 10), then
complete the method. There are several ways to do this; you don’t have to use
this method as long as it is recursive.

Test your function on the following input:

• Number: 89 Base: 2 ---> should print 1011001
• Number: 347 Base: 5 ---> should print 2342
• Number: 3289 Base: 8 ---> should print 6331

Export your finished project as Mod10a.jar.

	Part One -
	Part Two –
	Part 3 -
	Assignment 10-1 Recursion
	Part 1
	Definition
	Base Conversion

