Imaginary and Complex Numbers

Since *i* is defined to have the property that $i^2 = -1$, the number *i* is the principal square root of -1; that is, $i = \sqrt{-1}$. *i* is called the imaginary unit. Numbers of the form 3i, -5i, and $i\sqrt{2}$ are square roots of negative real numbers. For any positive

real number b, $\sqrt{-b^2} = \sqrt{b^2} \cdot \sqrt{-1}$ or b*i*.

Example 1) $\sqrt{-18} = \sqrt{(-1)(3^2)(2)} = \sqrt{-1} \bullet \sqrt{3^2} \bullet \sqrt{2} = 3 i \sqrt{2}$

Example 2) $-2i \bullet 7i = -14i^2 = -14(-1) = 14$

Example 3) $\sqrt{-10} \cdot \sqrt{-15} = i\sqrt{10} \cdot i\sqrt{15} = i^2\sqrt{150} = -1\sqrt{25} \cdot \sqrt{6} = -5\sqrt{6}$

Simplify:

1.	√-144	12 <i>i</i>	6.	$3i(-5i)^2$	-75 <i>i</i>
2.	$\sqrt{-64x^4}$	8x ² i	7.	i ³⁸	-1
3.	$\sqrt{-6} \bullet \sqrt{-24}$	-12	8.	√-120	$2i\sqrt{30}$
4.	(-2i)(-6i)(4i)	-48 <i>i</i>	9.	-2\[-168]	- 4 <i>i</i> √42
5.	i ²⁴	1	10.	$\sqrt{-125x^5}$	$5ix^2\sqrt{5x}$

Complex numbers

A complex number is any number that can be written in the form a + bi, where a and b are real numbers and *i* is the imaginary unit. For example, 7 + 4i and 2 - 6i are complex numbers.

Complex numbers can be added and subtracted as if they were binomials.

Example 1) (3 + 4i) + (2 + 7i) = 3 + 2 + 4i + 7i = 5 + 11i

Example 2) (-5 + 8i) - (2 - 12i) = -5 - 2 + 8i + 12i = -7 + 20i

The numbers a + bi are multiplied as if they were binomials, with $i^2 = -1$.

Example 3)	(3 + 4i)(2 + 7i)	Example 4)	$(-2+\sqrt{-16})(4-\sqrt{-9})$
	$= 6 + 21i + 8i + 28i^2$		= (-2 + 4i)(4 - 3i)
	= 6 + 21i + 8i + 28(-1)		$= -8 + 6i + 16i - 12i^{2}$
	= 6 - 28 + 29i		= -8 + 12 + 22i
	= -22 + 29i		= 4 + 22i

Simplify:

11.	(6-2i)(1+i)	8 + 4 <i>i</i>
12.	(3-5i)(3+5i)	34
13.	(1 - 4i)(2 + i)	6 – 7 <i>i</i>

14. $(7 + \sqrt{-36})(6 + 4i)$ 18 + 64*i*

15. $(10 - \sqrt{-25})(-15 - \sqrt{-49})$ -185 + 5*i*

Two complex numbers of the form a + bi and a – bi are called complex conjugates. The product of complex conjugates is always a real number. For example, (2 + 3i)(2 - 3i) = 4 - 6i + 6i + 9 or 13. You can use that fact when simplifying the quotient of two complex numbers. When dividing complex numbers it is important to remember that you must not leave the *i* in the denominator.

Example 1)
$$\frac{3i}{2+4i} = \frac{3i}{2+4i} \cdot \frac{2-4i}{2-4i} = \frac{6i-12i^2}{4-16i^2} = \frac{6i+12}{20} = \frac{3i+6}{10}$$

Example 2)
$$\frac{6}{2i} = \frac{6}{2i} \cdot \frac{i}{i} = \frac{6i}{2i^2} = \frac{6i}{2(-1)} = \frac{6i}{-2} = -3i$$

Simplify:

16.	$\frac{4}{5+3i}$	<u>10–6</u> <i>i</i> 17
17.	$\frac{3}{4i}$	$-\frac{3i}{4}$
18.	$\frac{2-i}{3-4i}$	$\frac{2+i}{5}$
19.	$\frac{10+i}{4-i}$	<u>39+14</u> <i>i</i> 17
20.	$\frac{8}{3i}$	$-\frac{8i}{3}$