ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 2006 and 2007

NEWTONIAN MECHANICS

$$v = v_0 + at$$

a = acceleration

$$r = r + t$$
 $t + \frac{1}{2}at$

F = force

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$
 $f = \text{frequency}$
 $h = \text{height}$

h = height

$$v^2 = {v_0}^2 + 2a(x - x_0)$$
 $J = \text{impulse}$
 $K = \text{kinetic energy}$

$$v = v_0 + 2u(x - x_0)$$

k = spring constant

$$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$$

 $\ell = length$

$$F_{fric} \le \mu N$$

m = mass

$$a_c = \frac{v^2}{r}$$

N = normal forceP = power

$$a_c = \frac{v}{r}$$

p = momentum

 $\tau = rF \sin \theta$

r = radius or distance

$$\tau = rF \sin \theta$$

 \mathbf{r} = position vector T = period

 $\mathbf{p} = m\mathbf{v}$

t = time

 $\mathbf{J} = \mathbf{F} \Delta t = \Delta \mathbf{p}$

U = potential energy

v = velocity or speed

 $K = \frac{1}{2}mv^2$

W =work done on a system x = position

 $\Delta U_g = mgh$

 μ = coefficient of friction

 $W = F\Delta r\cos\theta$

 θ = angle τ = torque

$$P_{avg} = \frac{W}{\Delta t}$$

$$P = F \upsilon \cos \theta$$

$$\mathbf{F}_{c} = -k\mathbf{x}$$

$$U_s = \frac{1}{2}kx^2$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T = \frac{1}{f}$$

$$F_G = -\frac{Gm_1m_2}{r^2}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY AND MAGNETISM

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q}{r^2}$$

A = area

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

B = magnetic fieldC = capacitance

$$\mathbf{E} = \frac{\mathbf{F}}{q}$$

d = distanceE = electric field

$$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

$$E_{avg} = -\frac{V}{d}$$

I = current ℓ = length

$$V = \frac{1}{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{n} \sum_{j=1}^{n} \frac{1}{n}$$

P = powerQ = charge

$$V = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}$$

q = point chargeR = resistance

$$C = \frac{Q}{V}$$

r = distance

$$C = \frac{\epsilon_0 A}{d}$$

t = timeU = potential (stored) energy

V = electric potential or

$$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$$

potential difference v = velocity or speed

$$I_{avg} = \frac{\Delta Q}{\Delta t}$$

 ρ = resistivity $\phi_m = \text{magnetic flux}$

$$R = \frac{\rho \ell}{A}$$

$$V = IR$$

$$P = IV$$

$$C_p = \sum_i C_i$$

$$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$$

$$R_s = \sum_i R_i$$

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

$$F_{R} = qvB\sin\theta$$

$$F_R = BI\ell \sin\theta$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

$$\phi_m = BA\cos\theta$$

$$\mathcal{E}_{avg} = -\frac{\Delta\phi_m}{\Delta t}$$

$$\varepsilon = B\ell v$$

ADVANCED PLACEMENT PHYSICS B EOUATIONS FOR 2006 and 2007

FLUID MECHANICS AND THERMAL PHYSICS

P	=	P_0	+	ρgh
---	---	-------	---	-----------

 $F_{buoy} = \rho V g$

 $A_1 v_1 = A_2 v_2$

 $P + \rho g y + \frac{1}{2} \rho v^2 = \text{const.}$

 $H = \frac{kA \Delta T}{L}$

 $PV = nRT = Nk_BT$ $K_{avg} = \frac{3}{2}k_BT$

 $v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{\mu}}$

 $W = -P\Delta V$

 $\Delta U = Q + W$

 $e_c = \frac{T_H - T_C}{T_{tt}}$

A = area

e = efficiency

F = force

h = depth

H = rate of heat transfer

k =thermal conductivity

 K_{avg} = average molecular

kinetic energy

 $\ell = length$

L =thickness

M = molar mass

n = number of moles

N = number of molecules

P = pressure

Q = heat transferred to a

system

T = temperature

U = internal energy

V = volume

v = velocity or speed

 v_{rms} = root-mean-square

velocity

W= work done on a system

y = height

 α = coefficient of linear

expansion

 μ = mass of molecule

 ρ = density

ATOMIC AND NUCLEAR PHYSICS

$$E = hf = pc$$

E = energy

$$K = hf - d$$

f = frequency

 $K_{\text{max}} = hf - \phi$

K = kinetic energy

 $\lambda = \frac{h}{p}$

m = mass

p = momentum

 λ = wavelength

 $\Delta E = (\Delta m) c^2$

 ϕ = work function

WAVES AND OPTICS

$$v = f\lambda$$

d = separation

$$n = \frac{c}{}$$

f = frequency orfocal length

$$i = \frac{c}{i}$$

h = height

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

L = distanceM = magnification

$$\sin \theta_C = \frac{n_2}{n_1}$$

m =an integer n = index of

$$\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$$

refraction

R = radius ofcurvature

$$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$$

s = distancev = speed

$$f = \frac{R}{2}$$

x = position λ = wavelength

$$d\sin\theta = m\lambda$$

 θ = angle

A = area

b = base

h = height

 $\ell = length$

w = width

r = radius

V = volume

C = circumference

S = surface area

$$x_m \sim \frac{m\lambda L}{d}$$

GEOMETRY AND TRIGONOMETRY

Rectangle

A = bh

Triangle

 $A = \frac{1}{2}bh$

Circle

 $A = \pi r^2$

 $C = 2\pi r$

Parallelepiped $V = \ell wh$

Cylinder

$$V=\pi r^2\ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\theta$$

90°

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$