Newton's Law of Cooling

Newton's Law of Cooling deals with the rate at which an object will change temperature when brought into a new environment of constant temperature. The law is:

Newton's Law of Cooling		
$T = T_s + \left(t_0 - T_s\right)e^{-kt}$		
T is the temperature of the object at time t, T _s is the surrounding temperature of the environment, t _o is the initial temperature of the object.		

Notice that, **just like in previous equations, the sub 0 always designates initial conditions.** Also, you will not have to memorize this formula. If you need it, I will give it to you.

These problems are not bad but they usually do take a bit of algebra to get to the answer. Let's do a problem using this formula.

In this problem a pan of warm (46° C) water is put into a refrigerator to cool down. At t = 10, T = 39 $^{\circ}$ C and 10 minutes later (at t = 20), T = 33 $^{\circ}$ C. We need to find how cold the refrigerator is, T_s.

$39 = T_{s} + (46 - T_{s})e^{-10k}$ $33 = T_{s} + (46 - T_{s})e^{-20k}$	First we will use the data given to set up two equations, using the given information about time and temperature.
$e^{-10k} = \frac{39 - T_s}{46 - T_s}$	I am going to solve for e ^{-10k} in the first equation.
$33 = T_s + (46 - T) \left(\frac{39 - T_s}{46 - T_s}\right)^2$	Now I am going to put this in the second equation since the square of e^{-10k} is e^{-20k} .
$33 = T_s + \frac{(39 - T_s)^2}{46 - T_s}$	Simplify.
$1518 - 33T_s = 46T_s - (T_s)^2$	Multiply through by the 46 - T _s . Square the
$+1521-78T_{s}+(T_{s})^{2}$	Shoma on the right side.
$-3^{\circ} C = T_{s}$	Simplify. Notice how that horrible-looking algebra problem turned out nicely! We just had to keep plodding along carefully.